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Traveling-wave relaxation in elongated liquid crystal cells

R. H. Self,* C. P. Please,† and T. J. Sluckin‡

Southampton Liquid Crystal Institute and Faculty of Mathematical Studies, University of Southampton,
Southampton SO17 1BJ, United Kingdom

~Received 30 June 1999!

We have made a theoretical study of Freedericksz relaxation in a long thin nematic liquid crystal cell subject
to strong anchoring on the short ends and weak anchoring on the long sides. On removing an imposed
magnetic field, three different types of relaxation behavior may be observed. Two of these are simple gener-
alizations of one-dimensional relaxation channels, and are dominated by either the ends or the sides. The third
is a traveling wave, nucleated by the strong anchoring ends of the cell but driven by the weak anchoring sides
and is the result of a subtle balance between the two classical mechanisms. A phase diagram is derived,
identifying the relaxation regimes as a function of the nondimensional initial field and the anchoring strength
in the long cell limit. A comparison is made between numerical results and a simple one-dimensional theory
derived from an asymptotic analysis. Surprisingly, the traveling wave behavior occurs for a large region of
parameter space.@S1063-651X~99!50211-0#

PACS number~s!: 64.70.Md, 61.30.2v, 05.45.Yv
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The search for more efficient liquid crystal devices h
led to intense study of novel geometries@1#. In a simple cell,
the aligning mechanism involves a balance between the
field and the elastic energy required to rotate the direc
over the width of the cell from the boundary-imposed orie
tation to that favored by the bulk@2#. By contrast, the align-
ing process in the more complicated geometries can be m
complex, in that the relevant length scales involve combi
tions of the sample size and characteristic pore sizes.

In this paper we discuss the Freedericksz transition in
such nonclassical geometry that exhibits interesting real
ment mechanisms. In particular, we find that the alignm
process upon removal of the external field can involve s
invasion of the sample by a wave produced by the bound
imposed orientation, rather than the usual diffusion proc
in which realignment takes place through the growth o
bulk reorientation Fourier mode. This solitonlike reorien
tion should be contrasted with other instances of soliton
solitonlike reorientation in liquid crystals, which almost un
versally involve reorientation in an external field, rather th
on removal of the external field@3#.

The cell geometry is shown in Fig. 1. Whereas the c
ventional Freedericksz geometry involves a cell homo
neous in two dimensions, and with dimensiond in a third
dimension, this geometry involves only one infinite (x) di-
mension. There are now two relevant directions: a thick c
dimension (z) of length ofd and a thin cell dimension (y) of
length l, where we shall considerl /d!1. In addition, the
face normal to the long dimension has strong anchoring c
ditions ~which we shall take to be perpendicular to this fac!,
whereas the face normal to the short dimension imposes
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weak anchoring in the same direction, with the weak anch
ing characterized by a strengthW @4#.

For simplicity, we shall assume the one constant appro
mation in which the elastic constantsK5K115K33. The
only relevant angle isu, which defines the director orienta
tion with respect to thez axis, so thatn̂5(0,sinu,cosu). We
shall assume an external magnetic fieldH, so as to avoid
complications with a self-consistent Poisson equation, w
negative dielectric anisotropy that rotates the director in
direction perpendicular to itself. The director remains nev
theless in theyz plane.

The free energy, per unit length in thex direction, is now
given by

F5
1

2E2d/2

d/2

dzWsin2 u~6d/2,z!

1
1

2E2d/2

d/2

dzE
2 l /2

l /2

dy„K~¹u!22DxH2 sin2 u…. ~1!

The presence of the weak anchoring introduces a length s
z5K/W. Strong anchoring shrinks the extrapolation lengthz
to zero, whereas weak anchoring expandsz to macroscopic
length scales.

ni-
.

FIG. 1. Cell geometry.
R5029 © 1999 The American Physical Society
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This complex geometry consists, in some sense, of a
perposition of a one-dimensional conventional strong
choring cell of lengthd ~Freedericksz fieldH1) and a weak
anchoring cell of lengthl ~Freedericksz fieldH18). These
threshold fields are well known:

H1
25

Kp2

Dxd2
; H18

252
W

Dx l
. ~2!

We now discuss equilibrium and relaxation to equilibriu
when the applied fieldH is removed. The governing equa
tions are

KS ]2u

]z2
1

]2u

]y2D 1DxH2 sinu cosu5g1

]u

]t
, ~3a!

uS y,6
d

2D50, ~3b!

K
]u

]y S 6
l

2
,zD57W sinu cosu, ~3c!

where g1 is the rotational viscosity@5#. Here backflow,
which often accompanies liquid crystal reorientation, is s
pressed by the close proximity of no-slip surfaces in the t
direction and hence has been neglected.

We introduce nondimensional parameters

h5
H

H1
, w5

d2

l z
5

Wd2

lK
, e5

l

d
~4!

and nondimensional variables

T5
K

g1d2
t, Z5

z

d
Y5

y

l
. ~5!

The problem can now be rewritten as

uZZ1
1

e2
uYY1p2h2 sinu cosu5uT , ~6a!

u~Y,6 1
2 !50, ~6b!

uY~6 1
2 ,Z!57e2w sinu cosu. ~6c!

The Freedericksz fieldhc can be calculated by examinin
the linear stability of theu50 state, and is given by

q tan
q

2
5e2w, ~7!

whereq25e2p2(hc
221). This can be linearized to yield

hc
2511

2w

p2
, ~8!

corresponding to the formulaHc
25H1

21H18
2 , with H1 ,H18

defined in Eq.~2!.
It will also turn out to be useful to examine the stability

the uniform stateu5p/2. This is thesaturatedstate, which
u-
-

-
n

cannot occur in this cell but could occur in a cell witho
strong anchoring ends. If we ignore theZ derivative in Eq.
~6a!, we obtain an implicit formula for the saturation fiel
hsat :

phsate tanhS 1

2
phsate D5e2w. ~9!

The formulas~7!,~9! for the Freedericksz and the satur
tion fields can be compared. In the limit of smalle, the
difference between these two quantities isO(e2), and is thus
small.

We now move on to the process of relaxation to equil
rium following the removal of the nondimensional fieldh.
The relevant control parameters are the applied fieldh, the
anchoringw, and the cell aspect ratioe. We assume thath
.hc , wherehc which depends one and w is the Freeder-
icksz threshold, in order that we have some distortion
relax from. In the cases we discuss we shall restrict ourse
to the physically interesting regime ofe!1 and find that the
qualitative features of the relaxation behavior are th
largely independent ofe. We first discuss the results of nu
merical studies of Eqs.~6!.

For very weak anchoring (w small! the behavior is domi-
nated by reorientation from the hard anchoring boundar
as would occur in a one-dimensional cell of widthd. This is
usually known as diffusive relaxation, which we denote
type I relaxation and is illustrated in Fig. 2 byu for Y50 at
fixed time intervals. Note that the behavior at other values
Y is essentially indistinguishable. For large initial fields t
initial, nearly uniform,u relaxes first to a sinelike shape
which is the principal mode, and this then relaxes expon
tially.

If the weak anchoring is much stronger (w large! it is
necessary to impose a large fieldh to create an initial distor-
tion. Relaxation now takes place more uniformly over t
cell with the strong anchoring boundaries affecting only
small local region. The behavior is, as expected, similar t
cell of width l with weak anchoring. We refer to this as typ
II relaxation and its structure is shown in Fig. 3.

The most interesting, and novel, behavior occurs wh
there is significant anchoring (w large! and a very large ini-
tial field is applied (h large!. In this case the initial distortion
effectively saturates the weak anchoring~note that the strong

FIG. 2. Type I ~diffusive! reorientation in the casee50.025,
w510, h514.96, showingu(Y50,Z) for T50.0 toT50.1 in steps
of 0.001.
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anchoring surfaces prevent complete saturation!. In this case
the relaxation takes place through a wave-of-invas
mechanism, outlined in Fig. 4. The surface-aligned reg
invades the field-aligned region. The wallsZ561/2 act as
nucleation sites for theu50 region, which invades theu
5p/2 region. The fronts are almost uniform in theY direc-
tion and move at an essentially constant speed in theZ di-
rection. Finally, the two fronts collide in the middle of th
cell, rapidly eliminating theu5p/2 region. We refer to this
behavior as type III relaxation.

Where these three different types of behavior occur
(h,w) parameter space~for e50.025) can be summarized i
a phase diagram, which we show in Fig. 5.

Additional insight can be found by considering a
asymptotic analysis of the problem in the limite!1. Taking
this limit in Eqs.~6! indicates that the solution must basica
depend onZ alone. Hence we shall therefore solve for t
variableū, which is the leading order term in an expansion
e:

u~Y,Z!5 ū~Z!1e2u2~Y,Z!1¯ . ~10!

In this case, changes in orientation along the very thinY
direction of the cell are energetically unfavorable and he
are very small.

In order to derive an equation forū, first substitute the
assumed expansion~10! into ~6a! and consider the resultin
leading order,O(e0), equation

FIG. 3. Type II ~spatially uniform! reorientation in the casee
50.025, w51000, h514.96, showingu(Y50,Z) ~solid line! and
u(Y50.5,Z) ~dotted line! for T50.0, 0.005, 0.0015, 0.002.

FIG. 4. Type III~traveling wave! reorientation in the casee
50.025, w51000, h517.51, showingu(Y50,Z) ~solid line! and
u(Y50.5,Z) ~dotted line! for T50.0, 0.01, 0.02, 0.03, 0.04.
n
n

n

e

ūZZ1u2YY1p2h2 sinū cosū2 ūT50. ~11!

The dependency onu2 can be removed by integrating th
equation with respect toY to give

E
21/2

1/2

dY~ ūZZ1u2YY1p2h2 sinū cosū2 ūT!50. ~12!

The terms in this integral involvingū have noY dependence
and so are trivial while for the remaining term we have

E
21/2

1/2

dY~u2YY!5u2Y~ 1
2 ,Z!2u2Y~2 1

2 ,Z!

522w sinū cosū, ~13!

where we have used the boundary conditions~6c!. Hence the
problem forū becomes

ūZZ1~p2h222w!sinū cosū5 ūT , ~14!

subject to ū50 at Z56 1
2 . ~15!

Equation~14! is a Fisher-Kolmogorov-type equation@6#
that can sustain traveling-wave solutions. Physically,
weak surface anchoring has been averaged over the w
width of the cell to create an effective field on the avera
orientation.

We now explore solutions to Eqs.~14!, ~15! when the
external fieldh, which has been present for a long time a
created an initial equilibrium configuration, is suddenly r
moved. The type of relaxation that then occurs depends
the relative sizes ofw andh.

Analysis shows that whenh50 the slowest and narrowes
traveling-wave solution of Eq.~14!, in an infinite region, has

FIG. 5. Phase diagram showing regions with different relaxat
types fore50.025. Inset shows a larger range ofh21. In each case
the field in the region to the right of the solid line is below th
Freedericksz threshold@calculated from Eq.~7!#, while the dotted
line @from Eq. ~9!# indicates the saturation field. Shaded regions
discussed in text.
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in scaled units a velocity of 2w1/2 and a wave thicknes
proportional tow21/2. Hence, if we havew<O(1) then the
wave cannot fit in the cell length. Reorientation then occ
through the growth of reorientational fluctuations, driven
Fick’s law. This diffusional reorientation time, in scale
units, isTD;O(1), yielding tD;ḡd2/K. This is type I be-
havior.

For large values ofw the wave is short enough to fit in th
cell; however, there may not be sufficient time for it to d
velop. This development time depends on the initial shap
the distortion and hence onh. For fields larger thanhc , but
not too large, the wave cannot develop because the aver
weak anchoring term reorients the field in a time scale
TR;w21. This behavior corresponds to type II relaxation.
contrast, if the initial field is very largeh@w, then over most
of the cell the distortion is nearly saturated. In this case
weak-anchoring driven reorientation time is very long. T
boundary conditions atz561/2 are able to nucleate the re
orientation, resulting in a traveling wave and a time scale
TR;w21/2 which we identify with type III behavior.

The asymptotic analysis gives expressions for the bou
aries between the various behaviors. These boundaries
~i! the classical Freedericksz transition when distortion fi
appears,~ii ! the saturation boundary where the weak anch
ing is overcome, and~iii ! the boundary where a travelin
wave can no longer fit in the cell. The analytical expressio
for these boundaries are given in Eqs.~7!, ~9! and are shown
as lines in Fig. 5. The numerical results have also been c
sidered and interpreted so that the different behavior is id
tified.

The shaded regions in the figure indicate where the
by

t

s

-
of

ed
f

e

f

d-
re:
t

r-

s

n-
n-

e-

havior is in transition and not of any single type. Because
the different scales involved, the main part of Fig. 5 use
linearw plot to show the II/III transition while the insert use
a logarithmw scale to better indicate the I/II transition. No
that the I/II transition region is rather wide but the II/I
transition region is very sharp. In fact, the latter becom
much sharper as the aspect ratioe becomes smaller. This
agrees with the earlier discussion following Eq.~9!. We also
note that the size of the spatially uniform relaxation type
regime diminishes ase is reduced. One of the significan
observations to make concerning Fig. 5 is that the region
(h,w) parameter space where traveling-wave behavior
curs is much larger than might be expected.

In conclusion, we have examined the reorientation p
cess following removal of a field in a complex cell wit
strongly anchored ends and weakly anchored sides. We
three relaxation regimes. In the weak-anchoring limit, t
relaxation is organized by theendsof the cell, and takes
place on a time scalet1;ḡd2/K. For weak-ordering fields
the relaxation is organized by thesidesof the cell, and takes
place on a time scalet2;ḡ l /K. These are simply generali
zations of the relevant simple Freedericksz cell relaxati
For initially strong ordering fields, the relaxation takes pla
through a compromise between these mechanisms. This
wave of advance, nucleated at the ends of the cell but dri
by the sides, with relaxation timet3;ḡ dl1/2/(KW)1/2

;(t1t2)1/2. Fuller details of all calculations can be found
@7#.
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