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Traveling-wave relaxation in elongated liquid crystal cells
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We have made a theoretical study of Freedericksz relaxation in a long thin nematic liquid crystal cell subject
to strong anchoring on the short ends and weak anchoring on the long sides. On removing an imposed
magnetic field, three different types of relaxation behavior may be observed. Two of these are simple gener-
alizations of one-dimensional relaxation channels, and are dominated by either the ends or the sides. The third
is a traveling wave, nucleated by the strong anchoring ends of the cell but driven by the weak anchoring sides
and is the result of a subtle balance between the two classical mechanisms. A phase diagram is derived,
identifying the relaxation regimes as a function of the nondimensional initial field and the anchoring strength
in the long cell limit. A comparison is made between numerical results and a simple one-dimensional theory
derived from an asymptotic analysis. Surprisingly, the traveling wave behavior occurs for a large region of
parameter spac€S1063-651X99)50211-7

PACS numbes): 64.70.Md, 61.30-v, 05.45.Yv

The search for more efficient liquid crystal devices hasweak anchoring in the same direction, with the weak anchor-
led to intense study of novel geometr{ds. In a simple cell, ing characterized by a strengi [4].
the aligning mechanism involves a balance between the bulk For simplicity, we shall assume the one constant approxi-
field and the elastic energy required to rotate the directomation in which the elastic constank=K;;=Ks3. The
over the width of the cell from the boundary-imposed orien-only relevant angle i®), which defines the director orienta-
tation to that favored by the bullR]. By contrast, the align- tion with respect to the axis, so than= (0,sing,cos). We
ing process in the more complicated geometries can be mohall assume an external magnetic fiéld so as to avoid
complex, in that the relevant length scales involve combinacomplications with a self-consistent Poisson equation, with
tions of the sample size and characteristic pore sizes. negative dielectric anisotropy that rotates the director in a
In this paper we discuss the Freedericksz transition in ondirection perpendicular to itself. The director remains never-
such nonclassical geometry that exhibits interesting realigntheless in theyz plane.
ment mechanisms. In particular, we find that the alignment The free energy, per unit length in tiedirection, is now
process upon removal of the external field can involve slowgiven by
invasion of the sample by a wave produced by the boundary-
imposed orientation, rather than the usual diffusion process 1 (dr2
in which realignment takes place through the growth of a F= EJ
bulk reorientation Fourier mode. This solitonlike reorienta-
tion should be contrasted with other instances of soliton and 1 [faz 112 ) 2 Gir?
solitonlike reorientation in liquid crystals, which almost uni- + Eﬁd,zdz 7|/2dy(K(V¢9) —AxH%sim ). (1)
versally involve reorientation in an external field, rather than
On.ltﬁren?:\éﬁl ;(Z(E?:eter);t?smsat:;ﬁﬁ]ﬁ Fig. 1. Whereas the Con_The presence of the weak anchoring introduces a length scale

ventional Freedericksz geometry involves a cell homoge-gz K/W. Strong anchoring shrinks the extrapolation length

neous in two dimensions, and with dimensidnn a third ;[gnzg?rr]oé(\:/;?:;eas weak anchoring expagads macroscopic
dimension, this geometry involves only one infinite) (di- '
mension. There are now two relevant directions: a thick cell

dimension ¢) of length ofd and a thin cell dimensiony( of ;
length |, where we shall considdrd<1. In addition, the T
face normal to the long dimension has strong anchoring con-
ditions (which we shall take to be perpendicular to this fiace
whereas the face normal to the short dimension imposes only eCINE d

dzWsir? 6(*=d/2,2)
—dr2
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This complex geometry consists, in some sense, of a su- /2
perposition of a one-dimensional conventional strong an-
choring cell of lengthd (Freedericksz fieldd,) and a weak
anchoring cell of length (Freedericksz fieldH;). These
threshold fields are well known:
0
H2_ K7T2 . H/2_2 W (2)
YoAyd? O TAxD
We now discuss equilibrium and relaxation to equilibrium
when the applied field is removed. The governing equa- 0
tions are -172 y4 172
20 320 96 FIG. 2. Type I(diffusive) reorientation in the case=0.025,
K| — 4+ — | +AxH?singcosf=y, —, (33  W=10,h=14.96, showing(Y=0.) for T=0.0 toT=0.1in steps
97> ay? ot of 0.001.
p +9 —0 (3b) cannot occur in this cell but could occur in a cell without
=375 strong anchoring ends. If we ignore tHederivative in Eq.
(6a), we obtain an implicit formula for the saturation field
Kaa +I = Wsing coss 3 hgat:
3y _2,z =FXWsinécoso, (30
1
where y; is the rotational viscosity5]. Here backflow, Thsa€ tanl‘(zw hsate | = €°W. 9

which often accompanies liquid crystal reorientation, is sup-

pressed by the close proximity of no-slip surfaces in the thin

direction and hence has been neglected.
We introduce nondimensional parameters

He H B d2_ Wd? | A
“Hy W—E—W, €4 (4)
and nondimensional variables
T= K t, Z= z Y—y 5
_F ] _a _I_' ( )

The problem can now be rewritten as

1
022+ _20YY+ ’772h2 SiﬂBCOS6’= HT! (68)
€
6(Y,=3)=0, (6b)
Oy(* 3,Z)=F e®w sin 6 cosé. (60

The Freedericksz fieltl, can be calculated by examining

the linear stability of the9=0 state, and is given by
d_.
o} tani = €W, (7)

whereq?= e?7?(hZ—1). This can be linearized to yield

h2=1+ 2 8
c 21 ( )
T

corresponding to the formuled?=H3+H}?, with Hq,H}
defined in Eq.(2).

The formulas(7),(9) for the Freedericksz and the satura-
tion fields can be compared. In the limit of small the
difference between these two quantitie©i&?), and is thus
small.

We now move on to the process of relaxation to equilib-
rium following the removal of the nondimensional fietd
The relevant control parameters are the applied figlthe
anchoringw, and the cell aspect ratie. We assume that
>h., whereh, which depends or andw is the Freeder-
icksz threshold, in order that we have some distortion to
relax from. In the cases we discuss we shall restrict ourselves
to the physically interesting regime et 1 and find that the
qualitative features of the relaxation behavior are then
largely independent oé. We first discuss the results of nu-
merical studies of Eq¥6).

For very weak anchoringy smal) the behavior is domi-
nated by reorientation from the hard anchoring boundaries,
as would occur in a one-dimensional cell of widthThis is
usually known as diffusive relaxation, which we denote as
type | relaxation and is illustrated in Fig. 2 yfor Y=0 at
fixed time intervals. Note that the behavior at other values of
Y is essentially indistinguishable. For large initial fields the
initial, nearly uniform, 6 relaxes first to a sinelike shape,
which is the principal mode, and this then relaxes exponen-
tially.

If the weak anchoring is much strongew (large it is
necessary to impose a large figldo create an initial distor-
tion. Relaxation now takes place more uniformly over the
cell with the strong anchoring boundaries affecting only a
small local region. The behavior is, as expected, similar to a
cell of width | with weak anchoring. We refer to this as type
Il relaxation and its structure is shown in Fig. 3.

The most interesting, and novel, behavior occurs when
there is significant anchoringy(large and a very large ini-

It will also turn out to be useful to examine the stability of tial field is applied b large. In this case the initial distortion

the uniform state9= /2. This is thesaturatedstate, which

effectively saturates the weak anchoriimgte that the strong
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FIG. 3. Type Il (spatially uniform reorientation in the case
=0.025,w=1000, h=14.96, showingd(Y=0,Z) (solid line) and
6(Y=0.57) (dotted ling for T=0.0, 0.005, 0.0015, 0.002.
0
anchoring surfaces prevent complete saturatibmthis case 0 0.05 °~_11 0.15 02
the relaxation takes place through a wave-of-invasion h

mechanism, outlined in Fig. 4. The surface-aligned region
invades the field-aligned region. The walls= +1/2 act as
nucleation sites for th&#=0 region, which invades th@

= 7/2 region. The fronts are almost uniform in tiedirec-
tion and move at an essentially constant speed inZtlg
rection. Finally, the two fronts collide in the middle of the
cell, rapidly eliminating thed= 7r/2 region. We refer to this
behavior as type Il relaxation.

Where these three different types of behavior occur in
(h,w) parameter spacdor e=0.025) can be summarized in
a phase diagram, which we show in Fig. 5.

Additional insight can be found by considering an
asymptotic analysis of the problem in the linsk<1. Taking 12 _ o
this limit in Egs.(6) indicates that the solution must basically f dY( 0,7+ 0,y y+ 72h?sind cosd— 61)=0. (12)
depend orZ alone. Hence we shall therefore solve for the 2

variableg, which is the leading order term in an expansion in
€:

FIG. 5. Phase diagram showing regions with different relaxation
types fore=0.025. Inset shows a larger rangehof'. In each case
the field in the region to the right of the solid line is below the
Freedericksz thresholtalculated from Eq(7)], while the dotted
line [from Eq.(9)] indicates the saturation field. Shaded regions as
discussed in text.

EZZ—’— 0zyy+ ’772h2 Singcosg—ar=0. (11)

The dependency ol, can be removed by integrating this
equation with respect t¥ to give

The terms in this integral involvinEhave noY dependence
and so are trivial while for the remaining term we have

0(Y,2)=0(Z)+€*0,(Y,Z)++ - (10 112
. o . . J' dY(Oayy) = Ov(5,2) = Ooy(—3.2)
In this case, changes in orientation along the very tiin —1/2

direction of the cell are energetically unfavorable and hence [
are very small. =—2wsinf cosé, (13

In order to derive an equation fat, first substitute the \yhere we have used the boundary conditis. Hence the
assumed expansidi0) into (6a) and consider the resulting —
problem foré becomes

leading orderO(€°), equation
057+ (7?h?—2w)sin @ cosf= 6+, (14)

/2
subjectto =0 at Z==31. (15)

Equation(14) is a Fisher-Kolmogorov-type equatidf]
that can sustain traveling-wave solutions. Physically, the
weak surface anchoring has been averaged over the whole
width of the cell to create an effective field on the average
orientation.

We now explore solutions to Eq$14), (15 when the
external fieldh, which has been present for a long time and
created an initial equilibrium configuration, is suddenly re-
moved. The type of relaxation that then occurs depends on

FIG. 4. Type lli(traveling wave reorientation in the case the relative sizes ofv andh.
=0.025, w= 1000, h=17.51, showingd(Y=0,Z) (solid line) and Analysis shows that whelm=0 the slowest and narrowest
#(Y=0.5Z) (dotted ling for T=0.0, 0.01, 0.02, 0.03, 0.04. traveling-wave solution of Eq14), in an infinite region, has

-1/2 Z 172
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in scaled units a velocity of @2 and a wave thickness havior is in transition and not of any single type. Because of
proportional tow 2. Hence, if we havev<=0(1) then the the different scales involved, the main part of Fig. 5 uses a
wave cannot fit in the cell length. Reorientation then occurdinearw plot to show the I/l transition while the insert uses
through the growth of reorientational fluctuations, driven bya logarithmw scale to better indicate the I/11 transition. Note
Fick’'s law. This diffusional reorientation time, in scaled that the I/ll transition region is rather wide but the II/IlI
units, is Tp~O(1), yielding tD~;d2/K. This is type | be- transition region is very sharp. In fact, the latter becomes
havior. much sharper as the aspect raticdbecomes smaller. This
For large values ofv the wave is short enough to fit in the @gdrees with the earlier discussion following E8). We also
cell; however, there may not be sufficient time for it to de-note that the size of the spatially uniform relaxation type I
velop. This development time depends on the initial shape ofegime diminishes ag is reduced. One of the significant
the distortion and hence dn For fields larger thai,, but observations to make concerning Fig. Sis that the region of
not too large, the wave cannot develop because the averag€d:W) parameter space where traveling-wave behavior oc-
weak anchoring term reorients the field in a time scale ofUrs is much larger than might be expected.
Tr~w~L. This behavior corresponds to type Il relaxation. In N conclusion, we have examined the reorientation pro-
contrast, if the initial field is very large>w, then over most ~ Cess following removal of a field in a complex cell with
of the cell the distortion is nearly saturated. In this case thétrongly anchored ends and weakly anchored sides. We find
weak-anchoring driven reorientation time is very long. Thethree r_elax_atlon regimes. In the weak-anchoring limit, the
boundary conditions at=+1/2 are able to nucleate the re- félaxation is organized by thendsof the cell, and takes
orientation, resulting in a traveling wave and a time scale oplace on a time scalg~ yd®/K. For weak-ordering fields,
Tr~w~ Y2 which we identify with type Il behavior. the relaxation is organized by tisidesof the cell, and takes
The asymptotic analysis gives expressions for the boundslace on a time scale,~ yl/K. These are simply generali-
aries between the various behaviors. These boundaries agitions of the relevant simple Freedericksz cell relaxation.
(i) the classical Freedericksz transition when distortion firstFor initially strong ordering fields, the relaxation takes place
appears(ii) the saturation boundary where the weak anchorthrough a compromise between these mechanisms. This is a
ing is overcome, andiii) the boundary where a traveling wave of advance, nucleated at the ends of the cell but driven
wave can no Ionggr fitin the ce_II. The analytical expressiongyy the sides, with relaxation time3~;dll’2/(KW)1’2
for these boundaries are given in EGB, (9) and are shown (¢ )12 Fyjier details of all calculations can be found in
as lines in Fig. 5. The numerical results have also been cony
sidered and interpreted so that the different behavior is iden-
tified. R.H.S. thanks the Faculty of Mathematical Studies for
The shaded regions in the figure indicate where the befinancial support during the course of this work.
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